Abstract

Pockels cells used as electro-optical modulators in high-power high-repetition lasers suffer from piezoelectric ringing phenomenon due to piezoelectric properties of the crystals. A new method for active suppression of the piezoelectric ringing in Pockels cells is proposed in this work. It is based on symmetric control of Pockels cell using burst of short positive and negative voltage pulses with the same amplitude instead of a single long pulse for light polarization modulation. Rising and falling edges of pulses of the burst induce symmetrical acoustic waves of the opposite phase and cancel the piezoelectric ringing of the crystal. A new high voltage driver capable of generating positive and negative pulses of tens of nanoseconds of 3 kV magnitude was developed for this purpose. The amplitude of laser beam intensity pulsations caused by the piezoelectric ringing can be reduced up to five times when active suppression method is used for the deuterated potassium dihydrogen phosphate (DKDP) Pockels cell. Such crystals like DKDP, LiNbO3, and LiTaO3 may benefit from the proposed method and find new use in lasers of high repetition rate where piezoelectric ringing is a major limiting factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.