Abstract

The mammalian fetus expresses a variety of antigens against which the maternal immune system can react and which in an allogeneic mating bears paternal transplantation antigens. Although these antigens may be expressed on the fetal trophoblast cells that contact maternal uterine decidua, the "fetal allograft" is not usually rejected. Previous studies have demonstrated the presence of nonspecific non-thymus-derived suppressor cells in the lymph nodes draining the uterus and in decidua of laboratory mice undergoing first allogeneic pregnancy. These suppressor cells appeared to be small lymphocyte cells that inhibit the generation of cytotoxic T lymphocytes (CTL) in vitro and in vivo and elaborate a nonspecific non-MHC-restricted soluble suppressor activity when cultured for 48 hours at 37 degrees C in vitro. We now report that soluble suppressor activity obtained from the decidua (DS) of allopregnant C3H/HeJ mice inhibits both the primary and secondary (memory) CTL response in vitro but does not inhibit lysis of target cells by preformed CTL. DS did not suppress the proliferation of YAC lymphoma cells, P-815 cells, or a C3H placental trophoblastoma line. Suppressor activity was obtained from anti-thy-1.2 + complement-resistant cells in the decidua, could also be obtained from the decidua of allopregnant CD1 nu/nu mice, and was associated with a single peak of activity of approximately 100,000 daltons on Sephacryl 200 chromatography. Suppression could not be overcome by adding either crude or HPLC-purified IL 2 to the mixed lymphocyte cultures in vitro, and both crude and column-purified suppressor factor inhibited the IL 2-dependent proliferation of H-Y cells (a cloned T cell line with NK activity). Furthermore, DS inhibited the IL 2-dependent generation of cytotoxic effector cells in vitro in the absence of allogeneic stimulator cells. Thus, a soluble suppressor factor obtained from non-T cells present in the decidua of successfully allopregnant mice could block the response to IL 2 and inhibit the generation of both specific and nonspecific cytotoxic effector cells. The significance of this inhibition with respect to survival of the "fetal allograft" is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.