Abstract

Since its development, Stokesian dynamics has been a leading approach for the dynamic simulation of suspensions of particles at arbitrary concentrations with full hydrodynamic interactions. Although developed originally for the simulation of passive particle suspensions, the Stokesian dynamics framework is equally well suited to the analysis and dynamic simulation of suspensions of active particles, as we elucidate here. We show how the reciprocal theorem can be used to formulate the exact dynamics for a suspension of arbitrary active particles, and then show how the Stokesian dynamics method provides a rigorous way to approximate and compute the dynamics of dense active suspensions where many-body hydrodynamic interactions are important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.