Abstract

The interpolation-error based (IEB) reversible data hiding combines difference expansion and histogram-shifting techniques to embed secret data into interpolation-error histograms of a stego-image with high payload and low distortion has been proposed recently. In this paper, an active steganalysis scheme is proposed by analyzing and modeling histogram abnormality in the interpolation-error domain of sub-sampled images with the general Gaussian distribution (GGD) features. A support vector machine (SVM) classifier is trained by estimated parameters of GGD, and then a quantitative algorithm is presented to estimate the embedding length and locations. The experimental results show that the proposed active steganalysis scheme is effective in not only detecting the IEB method but also estimating its message length and embedding locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.