Abstract

Using an analog electrical FitzHugh-Nagumo neuron including complex threshold excitation (CTE) properties, we analyze its spiking responses under pulse stimulation corresponding to oscillating threshold manifold. The system is subjected to outside pulse stimulus and can generate nonlinear integrate-and-fire and resonant responses which are typical for excitable neuronal cells ("all-or-none"). The answer of the neuron strongly depends on the number and the characteristics of incoming impulses (amplitude, width, strength and frequency). For certain parameters range, there is a possibility to trigger a spiking sequence with a finite number of spikes in response of a single short stimulus pulse. Thus active transformation of N incoming pulses to M outgoing spikes is possible. The predicted theoretical results are found and observed in a nonlinear electrical circuit mimicking the CTE mode, which enlighten the robustness of these phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.