Abstract

Polarization encoded (PE) Ti:sapphire amplifier can easily pre-shape the spectrum of amplified pulses. This property can be used to compensate for the spectral red-shifting and gain narrowing that are typically observed in Ti:Sapphire lasers. We demonstrate experimentally that active pre-shaping of the pulse spectrum in a PE amplifier combined with saturated amplification in the following conventional amplifier can conserve and even broaden the overall amplification bandwidth. A combined amplifier that includes PE- amplification (during the first passes) and a conventional one in the following saturation phase is also proposed and studied by computer modelling. This allows to achieve both the broad bandwidth and high efficiency in a single amplifier. A 5 passes combined PE amplifier was simulated. The seed was firstly amplified by 3 passes with the PE amplification scheme, then the seed was decoded and directed back to the crystal for 2 additional passes of a saturated conventional amplification. Because the seed was already decoded before the last saturation passes in the amplifier, the energy extraction efficiency reached 44% which is similar to that of a conventional Ti:sapphire amplifier. The amplified bandwidth of 125 nm was obtained with a Gaussian seed spectrum of 100nm. We show experimentally that the decoding efficiency of PE amplifier can be optimized by changing the thickness of the decoding quartz. At gain of ~30, the decoding efficiency of ~75% was achieved with the thickness of the decoding quartz of 35.1mm (thickness of the encoding quartz was 17.4mm), while the decoding efficiency of 80% was reached at gain of ~10. It shows that smaller gain guaranties better efficiency and also a smoother spectral profile. The compressibility of the PE amplified pulses close to the transform limit is verified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call