Abstract

The field of plasmonics1 offers a route to control light fields with metallic nanostructures through the excitation of surface plasmon polaritons2. These surface waves, bound to a metal dielectric interface, can tightly confine electromagnetic energy3. Active control over surface plasmon polaritons has potential for applications in sensing4, photovoltaics5, quantum communication6, 7, nanocircuitry8, 9, metamaterials10, 11 and super-resolution microscopy12. We achieve here active control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases through feedback, we focus surface plasmon polaritons at a freely prechosen point on the surface of a nanohole array. Digital addressing and scanning of surface plasmon polaritons without mechanical motion may enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.