Abstract
Detection and classification of unidentified underwater targets maneuvering in complex underwater environments are critical for active sonar systems. In previous studies, many detection methods were applied to separate targets from the clutter using signals that exceed a preset threshold determined by the sonar console operator. This is because the high signal-to-noise ratio target has enough feature vector components to separate. However, in a real environment, the signal-to-noise ratio of the received target does not always exceed the threshold. Therefore, a target detection algorithm for various target signal-to-noise ratio environments is required; strong clutter energy can lead to false detection, while weak target signals reduce the probability of detection. It also uses long pulse repetition intervals for long-range detection and high ambient noise, requiring classification processing for each ping without accumulating pings. In this study, a target classification algorithm is proposed that can be applied to signals in real underwater environments above the noise level without a threshold set by the sonar console operator, and the classification performance of the algorithm is verified. The active sonar for long-range target detection has low-resolution data; thus, feature vector extraction algorithms are required. Feature vectors are extracted from the experimental data using Power-Normalized Cepstral Coefficients for target classification. Feature vectors are also extracted with Mel-Frequency Cepstral Coefficients and compared with the proposed algorithm. A convolutional neural network was employed as the classifier. In addition, the proposed algorithm is to be compared with the result of target classification using a spectrogram and convolutional neural network. Experimental data were obtained using a hull-mounted active sonar system operating on a Korean naval ship in the East Sea of South Korea and a real maneuvering underwater target. From the experimental data with 29 pings, we extracted 361 target and 3351 clutter data. It is difficult to collect real underwater target data from the real sea environment. Therefore, the number of target data was increased using the data augmentation technique. Eighty percent of the data was used for training and the rest was used for testing. Accuracy value curves and classification rate tables are presented for performance analysis and discussion. Results showed that the proposed algorithm has a higher classification rate than Mel-Frequency Cepstral Coefficients without affecting the target classification by the signal level. Additionally, the obtained results showed that target classification is possible within one ping data without any ping accumulation.
Highlights
The attenuation of radio waves is more severe underwater compared to air, so that only very close distance targets can be detected
We propose a target classification algorithm that can be applied to all signals above the noise level regardless of the preset threshold by the sonar console operator and signal-to-noise ratio (SNR) of the signal in one ping
We studied whether target and clutter can be classified by feature extraction and Convolutional Neural Network (CNN)
Summary
The attenuation of radio waves is more severe underwater compared to air, so that only very close distance targets can be detected. The equipment used to detect underwater targets using sound waves is called sonar, which can be divided into two main categories: active sonar and passive sonar. In the latter case, the sound signal generated by the target is received and detected, while in the former case, the acoustic signal is transmitted and the echo returned from the target is detected. When the acoustic signal from an underwater target is low, it would be difficult to detect with a passive sonar, but active sonar could be used instead. The detection of underwater targets is up to the decision of a trained sonar console operator. It is difficult to continuously detect and classify the movement of a target in various underwater environments
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.