Abstract

ZnS–SiO2 targets have been directly soldered to copper backing plates at 180°C in air using an Sn56Bi4Ti(Ce, Ga) filler. The affinity of cerium to oxygen protects titanium from oxidation, allowing titanium to react with ZnS–SiO2 sputtering target. The shear strengths are 1.7, 8.7, and 1.3 MPa for ZnS–SiO2/ZnS–SiO2, copper/copper and ZnS–SiO2/copper joints, respectively. EPMA elemental mapping shows that aging test at 120° for 100 hours enhanced the segregation of titanium at the ZnS–SiO2/solder interfaces. The shear strength of ZnS–SiO2/copper joint after aging test is 1.3 MPa that shows no trace of degradation compared to the initial quality of the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.