Abstract

Studies were made of the active ion transport by the isolated urinary bladder of the European toad, Bufo bufo, and the large American toad, Bufo marinus. The urinary bladder of the toad is a thin membrane consisting of a single layer of mucosal cells supported on a small amount of connective tissue. The bladder exhibits a characteristic transmembrane potential with the serosal surface electrically positive to the mucosal surface. Active sodium transport was demonstrated by the isolated bladder under both aerobic and anaerobic conditions. Aerobically the mean net sodium flux across the bladder wall measured with radioactive isotopes, Na(24) and Na(22), just equalled the simultaneous short-circuit current in 42 periods each of 1 hour's duration. The electrical phenomenon exhibited by the isolated membrane was thus quantitatively accounted for solely by active transport of sodium. Anaerobically the mean net sodium flux was found to be slightly less than the short-circuit current in 21 periods of observation. The cause of this discrepancy is not known. The short-circuit current of the isolated toad bladder was regularly stimulated with pure oxytocin and vasopressin when applied to the serosal surface under aerobic and anaerobic conditions. Adrenaline failed to stimulate the short-circuit current of the toad bladder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.