Abstract

Vertical tail buffeting is a serious multidisciplinary problem that limits the performance and maneuverability of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced loads on the tails leading to their premature fatigue failure. An active smart material control system, using distributed piezoelectric (PZT) actuators, is developed for buffet alleviation and is presented. The surfaces of the vertical tail are equipped with PZT actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the PZT actuators are modeled using a finite-element model. A single-input/single-output controller is designed to drive the active PZT actuators. High-fidelity analysis modules for the fluid dynamics, structural dynamics, electrodynamics of the PZT actuators, control law, fluid–structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. The results of this study indicate that the actively controlled PZT actuators are an effective tool for buffet alleviation over wide range of angels of attack. Peak values of power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The root mean square values of tail-tip acceleration are reduced by as much as 12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call