Abstract

Allostery Enzymes often form dimers or higher-order oligomers, even when each active site is isolated and the reactions are simple. But the effect of a neighbor can be profound. Mehrabi et al. used a photolabile compound to initiate a reaction in the enzyme fluoroacetate dehalogenase, which they could follow by time-resolved serial synchrotron crystallography. Snapshots of the reaction revealed large allosteric motions between the two active sites of the dimeric enzyme. Each active site traded the ability to bind substrate and catalyze the reaction, such that only one was engaged at a time. This behavior is common in enzymes but is rarely visualized and still poorly understood. Science , this issue p. [1167][1] [1]: /lookup/doi/10.1126/science.aaw9904

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.