Abstract

The periplasmic C-terminal domain of the Escherichia coli DsbD protein (cDsbD) has a thioredoxin fold. The two cysteine residues in the CXXC motif serve as the reductant for the disulfide bond of the N-terminal domain which can in turn act as a reductant for various periplasmic partners. The resulting disulfide bond in cDsbD is reduced via an unknown mechanism by the transmembrane helical domain of the protein. We show by NMR analysis of 13C, 15N-labelled cDsbD that the protein is rigid, is stable to extremes of pH and undergoes only localized conformational changes in the vicinity of the CXXC motif, and in adjacent regions of secondary structure, upon undergoing the reduced/oxidized transition. p K a values have been determined, using 2D NMR, for the N-terminal cysteine of the CXXC motif, Cys461, as well as for other active-site residues. It is demonstrated using site-directed mutagenesis that the negative charges of the side-chains of Asp455 and Glu468 in the active site contribute to the unusually high p K a value, 10.5, of Cys461. This value is higher than expected from knowledge of the reduction potential of cDsbD. In a double mutant of cDsbD, D455N/E468Q, the p K a value of Cys461 is lowered to 8.6, a value close to that expected for an unperturbed cysteine residue. The p K a value of the second cysteine in wild-type cDsbD, Cys464, is significantly higher than the maximum pH value that was studied (pH 12.2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.