Abstract

Site-directed mutagenesis of active site residues of deacetoxycephalosporin C synthase active site residues was carried out to investigate their role in catalysis. The following mutations were made and their effects on the conversion of 2-oxoglutarate and the oxidation of penicillin N or G were assessed: M180F, G299N, G300N, Y302S, Y302F/G300A, Y302E, Y302H, and N304A. The Y302S, Y302E, and Y302H mutations reduced 2-oxoglutarate conversions and abolished (<2%) penicillin G oxidation. The Y302F/G300A mutation caused partial uncoupling of penicillin G oxidation from 2-oxoglutarate conversion, but did not uncouple penicillin N oxidation from 2-oxoglutarate conversion. Met-180 is involved in binding 2-oxoglutarate, and the M180F mutation caused uncoupling of 2-oxoglutarate from penicillin oxidation. The N304A mutation apparently enhanced in vitro conversion of penicillin N but had little effect on the oxidation of penicillin G, under standard assay conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.