Abstract

Endonucleolytic processing of precursor tRNAs (ptRNAs) by RNase P yields 3'-OH and 5'-phosphate termini, and at least two metal ions are thought to be essential for catalysis. To determine if the hydrolysis reaction catalyzed by bacterial RNase P (RNAs) involves stabilization of the 3'-oxyanion leaving group by direct coordination to one of the catalytic metal ions, ptRNA substrates with single 3'- S -phosphorothiolate linkages at the RNase P cleavage site were synthesized. With a 3'- S -phosphorothiolate-modified ptRNA carrying a 7 nt 5'-flank, a complete shift of the cleavage site to the next unmodified phosphodiester in the 5'-direction was observed. Cleavage at the modified linkage was not restored in the presence of thiophilic metal ions, such as Mn(2+)or Cd(2+). To suppress aberrant cleavage, we also constructed a 3'- S -phosphorothiolate-modified ptRNA with a 1 nt 5'-flank. No detectable cleavage of this substrate was seen in reactions catalyzed by RNase P RNAs from Escherichia coli and Bacillus subtilis, independent of the presence of thiophilic metal ions. Ground state binding of modified ptRNAs was not impaired, suggesting that the 3'- S -phosphorothiolate modification specifically prevents formation of the transition state, possibly by excluding catalytic metal ions from the active site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.