Abstract
Tactile sensing enables high-precision 3D shape perception when vision is limited. However, tactile-based shape reconstruction remains a challenging problem. In this paper, a novel visuotactile sensor, GelStereo Palm 2.0, is proposed to better capture 3D contact geometry. Leveraging the dense tactile point cloud captured by GelStereo Palm 2.0, an active shape reconstruction pipeline is presented to achieve accurate and efficient 3D shape reconstruction on irregular surfaces. GelStereo Palm 2.0 achieves a spatial resolution of 1.5 mm and a reconstruction accuracy of 0.3 mm. The accuracy of the proposed active shape reconstruction pipeline reaches 2.3 mm within 18 explorations. The proposed method has potential applications in the shape reconstruction of transparent or underwater objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.