Abstract

An active security control approach is developed in this article for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks, where DoS attacks exist in both the sensor-to-controller (S-C) channel and the controller-to-actuator (C-A) channel. Due to the cost constraints of attacks, it is reasonable to consider that the number of maximum continuous DoS attacks in both the S-C and the C-A channels is bounded. Then, to defend the two-channel DoS attacks, an active security control strategy that makes full use of the unattacked intervals is designed to ensure that the control inputs are updated timely in each period. Meanwhile, a security controller that contains both the current and future control inputs is designed. Under the active security control strategy and the security controller, the addressed CPS under two-channel DoS attacks can be asymptotically stable without losing the control performance. Finally, both the simulations and experiments are given to demonstrate the effectiveness of the proposed active security control approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.