Abstract

BackgroundStreptomyces mobaraenesis transglutaminase (smTG) is widely used to generate protein crosslinking or attachment of small molecules. However, the low thermostability is a main obstacle for smTG application. In addition, it is still hard to achieve the secretory expression of active smTG in E. coli, which benefits the enzyme evolution. In this study, a combined strategy was conducted to improve the thermostability and secretory expression of active smTG in E. coli.ResultsFirst, the thermostable S. mobaraenesis transglutaminase variant S2P-S23V-Y24N-S199A-K294L (TGm1) was intracellularly expressed in pro-enzyme form in E. coli. Fusing the pro-region of Streptomyces hygroscopicus transglutaminase (proH) and TrxA achieved a 9.78 U/mL of intracellular smTG activity, 1.37-fold higher than the TGm1 fused with its native pro-region. After in vitro activation by dispase, the TGm1 with proH yielded FRAPD-TGm1, exhibiting 0.95 ℃ and 94.25% increases in melting temperature and half-life at 60 ℃ compared to FRAP-TGm1 derived from the expression using its native pro-region, respectively. Second, the TGm1 with proH was co-expressed with transglutaminase activating protease and chaperones (DnaK, DnaJ, and GrpE) in E. coli, achieving 9.51 U/mL of intracellular FRAPD-TGm1 without in vitro activation. Third, the pelB signal peptide was used to mediate the secretory expression of active TGm in E. coli, yielding 0.54 U/mL of the extracellular FRAPD-TGm1. A script was developed to shuffle the codon of pelB and calculate the corresponding mRNA folding energy. A 1.8-fold increase in the extracellular expression of FRAPD-TGm1 was achieved by the Top-9 pelB sequence derived from the coding sequences with the lowest mRNA folding energy. Last, deleting the gene of Braun’s lipoprotein further increased the extracellular yield of FRAPD-TGm1 by 31.2%, reached 1.99 U/mL.ConclusionsThe stabilized FRAPD-smTG here could benefit the enzyme application in food and non-food sectors, while the E. coli system that enables secretory expression of active smTG will facilitate the directed evolution for further improved catalytic properties. The combined strategy (N-terminal modification, co-expression with chaperones, mRNA folding energy optimization of signal peptide, and lipoprotein deletion) may also improve the secretory expression of other functional proteins in E. coli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.