Abstract

ABSTRACT Laser powder bed fusion (LPBF) is capable to process complex flow field structures on 316L stainless steel (316L SS) bipolar plates, which is promising to improve the performance of proton exchange membrane fuel cell (PEMFC). However, insufficient corrosion resistance and relatively high interfacial contact resistance (ICR) hinder the widespread of LPBF-processed 316L SS bipolar plates. In this work, active screen plasma nitriding (ASPN) was used to modify 316L SSs fabricated by the LPBF process and forging, respectively. Results showed that the nitrided layer of LPBF-processed 316L SS (2000 mm/s, 300 W) exhibited the highest surface nitrogen concentration, thickest nitrided layer and highest average hardness. The ICR values decreased significantly after ASPN treatment. The corrosion current of nitrided LPBF-processed 316L SS (2000 mm/s, 300 W) was much lower than that of the nitrided forged 316L SS. By comparing multiscale microstructures between LPBF-processed and forged 316L SS, the ASPN mechanism of LPBF-processed 316L SS was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call