Abstract

Currently, vertical partitioning has been used in multimedia databases in order to take advantage of its potential benefits in query optimization. Nevertheless, most vertical partitioning algorithms are static; this means that they optimize a vertical partitioning scheme (VPS) according to a workload, but if this workload suffers changes, the VPS may be degraded, which would result in long query response time. This paper presents a set of active rules to perform dynamic vertical partitioning in multimedia databases. First of all, these rules collect all the information that a vertical partitioning algorithm needs as input. Then, they evaluate this information in order to know if the database has experienced enough changes to trigger a performance evaluator. In this case, if the performance of the database falls below a threshold previously calculated by the rules, the vertical partitioning algorithm is triggered, which gets a new VPS. Finally, the rules materialize the new VPS. Our active rule base is implemented in the system DYMOND, which is an active rule-based system for dynamic vertical partitioning of multimedia databases. DYMOND's architecture and workflow are presented in this paper. Moreover, a case study is used to clarify and evaluate the functionality of our active rule base. Additionally, authors of this paper performed a qualitative evaluation with the aim of comparing and evaluating DYMOND's functionality. The results showed that DYMOND improved query performance in multimedia databases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call