Abstract

A two-bladed downwind turbine system was upscaled from 13.2 MW to 25 MW by redesigning aerodynamics, structures, and controls. In particular, three 25-MW rotors were developed, and the final version is a fully redesigned model of the original rotor. Despite their radically large sizes, it was found that these 25-MW turbine rotors satisfy this limited set of structural design drivers at the rated condition and that larger blade lengths are possible with conewise load-alignment. In addition, flapwise morphing (varying the cone angle with a wind-speed schedule) was investigated to minimize mean and fluctuating blade root bending loads using steady inflow proxies for the maximum and lifetime damage equivalent load moments. Compared to the fixed coned rotor case, morphing can provide an Annual Energy Production (AEP) increase of 6%, and the maximum blade root flapwise bending moment increases 21% (still under the constraint, i.e., 10% of the ultimate moments) as a trade-off. The resulting series of 25-MW rotors can be a valuable baseline for further development and assessment of ultra-large-scale wind turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call