Abstract
Mutation of all nonessential cysteine residues to serines in rhodanese turns the enzyme into a form (C3S) that is fully active but less stable than wild type (WT). bis-ANS binding studies have shown that C3S has more hydrophobic exposure than WT, although both have similar secondary structures suggesting the flexibility of its structure. Activity of C3S falls once it binds bis-ANS, and covalent binding of bis-ANS to C3S is induced by light. bis-ANS binds to C3S in its C-terminal domain as is shown by gel electophoresis and proteolysis. bis-ANS binding makes the C-terminal domain more susceptible to trypsin cleavage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.