Abstract

Optical tweezers are used to manipulate the shape of artificial dioleoyl-phosphatidylcholine (DOPC) phospholipid vesicles of around 30 μm diameter. Using a time-shared trapping system, a complex of traps drives oscillations of the vesicle equator, with a sinusoidal time dependence and over a range of spatial and temporal frequencies. The mechanical response of the vesicle membrane as a function of the frequency and wavelength of the driving oscillation is monitored. A simple model of the vesicles as spherical elastic membranes immersed in a newtonian fluid, driven by a harmonic trapping potential, describes the experimental data. The bending modulus of the membrane is recovered. The method has potential for future investigation of nonthermally driven systems, where comparison of active and passive rheology can help to distinguish nonthermal forces from equilibrium fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.