Abstract
Amazonia is well known for its high natural regeneration capacity; for this reason, passive restoration is normally recommended for the recovery of its degraded forests. However, highly deforested landscapes in southern Amazonia require active restoration. Since restoration methods can shape the quality and speed of early forest recovery, this study aimed to verify how active restoration pushes sites stably covered with exotic grasses towards forest recovery. We evaluated early forest succession at active restoration sites, i.e., soil plowing, direct seeding of pioneer species, and seedling stock planting at low density. We analyzed forest structure, diversity, and species composition in two age classes, 0.5–3.5 and 4.5–7.5 years old. As reference, we evaluated sites able to naturally regenerate in the same region. We sampled 36 active restoration and 31 natural regeneration sites along the Madeira River, southern Amazonia. Active restoration triggered succession to similar or higher levels of forest structure than sites where natural regeneration was taking place. The most dominant species did not overlap between active restoration and natural regeneration sites. The overall composition of species was different between the two restoration methods. Dominant species and size class distribution show that active restoration is performing successfully. Soil preparation combined with a high availability of seeds of pioneer trees resulted in a high stem density and basal area of facilitative pioneer trees. Planted seedlings added species diversity and increased density of large trees. Interventions to increase the odds of natural regeneration can be effective for non-regenerating sites in resilient landscapes.
Highlights
IntroductionNatural regeneration can be the most cost-effective method for tropical forest restoration [1]
Our results showed that active restoration practices triggered forest succession on sites formerly dominated by African grasses that had weak or no natural regeneration
These results show that the barrier to natural regeneration in this landscape is not seed availability, but the local conditions for germination and establishment, and suggest that soil preparation and grass control might be more important than introducing species through planting
Summary
Natural regeneration can be the most cost-effective method for tropical forest restoration [1]. Even in Amazon forests, known for its high capacity of naturally regenerating and recovering biomass [4], succession may be arrested depending on the intensity and length of previous land use [5,6,7]. In such cases, assisted natural regeneration or active restoration are recommended [2,5,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.