Abstract

We introduce a model of active responsive colloids (ARCs) in which an internal degree of freedom (DoF) of a single colloidal particle is "activated" by coupling it to a different thermostat than for the translational DoFs. As for the responsive internal DoF, we consider specifically the size (diameter) of the spherical particles, which is confined by a harmonic parent potential being either entropic or energetic in nature. The ARCs interact via a repulsive Hertzian pair potential, appropriate to model hydrogels or elastic colloids, and are studied for various densities using Brownian dynamics simulations. We tune the internal activity in the nonequilibrium steady state by scanning through a wide range of internal temperatures, both smaller ("colder") and larger ("hotter") than the translational temperature. The results show a rich and intriguing behavior for the emergent property distributions, colloidal pair structure, and the diffusive translational dynamics controlled by the internal activity, substantially depending on whether the internal DoF moves in an entropic or energetic potential. We discuss theoretical thermal limits and phenomenological models which can explain some of the nonequilibrium trends qualitatively. Our study indicates that particle dynamical polydispersity as well as the structure and dynamics of dense macromolecular suspensions can be vastly tuned by internal activity in terms of internal "hot" or "cold" fluctuating states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call