Abstract

Image search reranking methods usually fail to capture the user's intention when the query term is ambiguous. Therefore, reranking with user interactions, or active reranking, is highly demanded to effectively improve the search performance. The essential problem in active reranking is how to target the user's intention. To complete this goal, this paper presents a structural information based sample selection strategy to reduce the user's labeling efforts. Furthermore, to localize the user's intention in the visual feature space, a novel local-global discriminative dimension reduction algorithm is proposed. In this algorithm, a submanifold is learned by transferring the local geometry and the discriminative information from the labelled images to the whole (global) image database. Experiments on both synthetic datasets and a real Web image search dataset demonstrate the effectiveness of the proposed active reranking scheme, including both the structural information based active sample selection strategy and the local-global discriminative dimension reduction algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.