Abstract

Although the folding of epithelial layers is one of the most common morphogenetic events, the underlying mechanisms of this process are still poorly understood. We aimed to determine whether an artificial bending of an embryonic cell sheet, which normally remains flat, is reinforced and stabilized by intrinsic cell transformations. We observed both reinforcement and stabilization in double explants of blastocoel roof tissue from Xenopus early gastrula embryos. The reinforcement of artificial bending occurred over the course of a few hours and was driven by the gradual apical constriction and radial elongation of previously compressed cells situated at the bending arch of the concave layer of explant. Apical constriction was associated with actomyosin contraction and endocytosis-mediated engulfing of the apical cell membranes. Cooperative apical constrictions of the concave layer of cells produced a tensile force that extended over the entire surface of the explant and correlated with apical contraction of the concave side cells. In the explants taken from the anterior regions of the embryo, this reinforcement was more stable and the bending better expressed than in those taken from suprablastoporal areas. The morphogenetic role of cell responses to the bending force is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call