Abstract

The basic philosophy behind RED is to prevent congestion. When the average queue length exceeds the minimum threshold, packets are randomly dropped, or the explicit congestion notification bit is marked. Since network requirements differ significantly, it is not an optimal approach to establish RED parameters with constant value. There is a new algorithm we are proposing called Critical Point on Target Queue (AQM-RED-CPTQ), provide greater congestion management over the network while also preserving the value of RED. To overcome the problem in RED without changing queue weight parameter, we have proposed few models to control the congestion by introducing range parameter with probability and control mechanism which will belong between minimum and maximum threshold. The current queue size is controlled together with average queue size. A new range variable has been introduced to improve the performance of priority queue of existing RED based algorithm which improves the overall performance of networks. For each packet, minimum and maximum threshold has been updated and dropped with probability (Pa) for a special condition. Instead of multiplicative increase and decrease the maximum probability, the scheme uses additive-increase and multiplicative-decrease. Once the AVG queue length is close to the minimum threshold value, our approach automatically sets queue parameter according to queue conditions and handles queuing delay and improve throughput. The simulated results proof that our approaches are better than RED in terms of throughput, end to end delay, packet delivery ratio and goodput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.