Abstract

A novel three-phase two-leg switch-clamped inverter is presented to achieve multilevel pulse-width modulation (PWM) operation, harmonics elimination, reactive power compensation and dc-link voltage regulation. Four active switches with voltage stress of dc-link and two ac switches with voltage stress of half dc-link are used in the proposed inverter. In this paper, the proposed inverter is operated as a controllable current source to supply the necessary active power for the compensation of inverter losses, to suppress current harmonics, and to compensate the reactive power drawn from the non-linear loads. Therefore, the balanced and sinusoidal line currents are drawn from the ac source. Two control loops are used in the adopted control scheme to maintain the constant dc-link voltage (outer loop with low-bandwidth control) and to achieve the line current command tracking (inner 1oop with high-bandwidth control). The mathematical model of the proposed converter for the operation active power filter is derived and the control scheme is provided. Computer simulations and experimental results based on a laboratory scale-down prototype are presented to verify the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call