Abstract
Active power-assist lower limb exoskeleton robots aim to enhance wearer assistance while ensuring wearer comfort and simplifying the exoskeleton’s design and control. This study proposes an active assistance method known as Equivalent Force on Connection (EFOC). The EFOC method effectively addresses the limitations encountered in conventional Joint Torque Proportional Compensation (JTPC) approaches. These limitations include the necessity for exoskeleton robot configurations to align with human limb structures for parallel assistance at each lower limb joint, as well as the exoskeleton’s inability to contribute a greater proportion of assistance due to the excessive load on specific skeletal and muscular structures, resulting in wearer discomfort. Furthermore, the effectiveness of the EFOC method is evaluated and validated for assistance during both the stance and swing phases of single-leg movements. Finally, the proposed EFOC method is implemented on a hydraulic-driven lower limb exoskeleton robot to assist wearers in squatting, stepping, and jumping locomotion. The experimental results demonstrate that the proposed EFOC method can effectively achieve the desired assistance effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.