Abstract
The global demand for wireless, mobile communication, and data services has grown significantly in the recent years. Consequently, electrical energy consumption to provide these services has increased. The principal contributors to this electricity demand are approximately 7 million telecommunication base stations (TBS) worldwide. They act as access points for mobile networks and have typical electrical loads of 2–3 kW. Whereas for most of the TBS, the electricity is supplied by the grid, approximately 15% are located in remote areas or regions with poor grid accessibility, where diesel generators (DG) supply the required electricity. Based on a dynamic simulation model the application of a latent heat storage (LHS) using phase change material (PCM) in existing off-grid TBS has been analyzed. The LHS unit has been modeled as an air-based storage with phase change temperatures between 20 °C and 30 °C with the PCM being macro-encapsulated in slabs. This paper demonstrates the potential to reduce the primary energy consumption in off-grid TBS through the following methods: optimization of the DG operating point, of the air conditioning unit operation schedule and the utilization of photovoltaic (PV) energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.