Abstract

The aggregation of microorganisms in colonies and biofilms underpins a myriad of biological processes, and has crucial implications in ecology and biomedical sciences. While much of our knowledge of microbial motion is based on single-cell mechanisms or cell-cell interactions, the origin of cooperativity in microbial communities is not yet fully understood. Here, we reveal the existence of a continuum percolation transition in two model suspensions of pusher-type microswimmers: an asymmetric dumbbell and a squirmer model. Clusters of swimmers held together by hydrodynamic forces dynamically aggregate and separate. Using simulations with explicit hydrodynamics and theory, we find that as the microswimmers' filling fraction increases, the cluster size distribution approaches a scale-free form and system-spanning clusters emerge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.