Abstract

We have investigated the active, passive and myogenic tension-internal circumference relations of rat intramural coronary and, as controls, mesenteric small arteries (internal diameter ca. 200 micron) using an isometric myograph. The active tensions of the vessels (when fully activated with 30 microM serotonin in K-saline) reached a maximum (2.54 N/m, coronary; 3.39 N/m, mesenteric) at an internal circumference, L0, where the passive tensions (measured in Ca-free solution) were 0.80 N/m (coronary) and 0.74 N/m (mesenteric). Below 0.8 L0 and above 1.2 L0 the active tensions fell linearly, the zero tension intercepts being 0.37 L0 and 1.74 L0 (coronary) and 0.40 L0 and 1.72 L0 (mesenteric). The passive wall tensions of the vessels rose exponentially as a function of internal circumference, the wall tension at 1.5 L0 being 10.0 N/m (coronary) and 8.5 N/m (mesenteric). In normal physiological salt solution, the coronary vessels had a Ca2+ dependent myogenic tone which was also dependent on the internal circumference. Maximum myogenic tone (0.54 N/m) was obtained at 1.18 L0. The mesenteric vessels had no such myogenic tone. Histological examination showed that the media/lumen ratios of both vessel types were the same, and that the smooth muscle content of the media was greater in the coronary (81%) than in the mesenteric (72%) vessels. The smaller active tension of the coronary vessels could not therefore be ascribed to a reduced smooth muscle content, but possibly in part to an observed heterogeneous arrangement of the smooth muscle cells in the coronary vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call