Abstract

We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call