Abstract

Abstract The measurement of the neutron fluence produced inside a radiotherapy installation has been a matter of concern specially in the photon high megavoltage modalities. Until now, due to the pulsed nature of the beam and the high photon fluence inside the radiotherapy room, only passive methods were considered reliable. In this work we describe a neutron detector, based on neutron sensitive SRAM devices, that can operate inside the treatment room and is insensitive to the scattered photon fluence. This device has been used to estimate the neutron production and the patient exposure to neutrons in several clinical installations with different linac commercial models. The detection principle is based on the production of Single Event Upset (SEU) of memory states on modern sub-micron technology SRAMs. Spectral sensitivity was initially studied using low energy neutron shielding (boron and cadmium layers) and later using dedicated calibration neutron beams. With a 3 mm thick flex – boron shield, the SEU rate was reduced to around 5% of the unshielded rate, demonstrating that the dominant contribution of the SEU cross section of the chosen SRAM was due to low energy neutrons. The total memory size was scaled to obtain a response repeatability with relative typical uncertainty of about 2% for 1000 Monitor Units (MU) in a 15 MV accelerator facility with excellent linearity with MU. The sensitivity of this digital detector is around 0.3 μSv H ∗ (10) per event and considering the signal to fluence ratio around 2 × 10 −4 event cm 2 .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call