Abstract

Cell signaling pathways play key roles in coordinating cellular events in development. The Notch signaling pathway is highly conserved across all multicellular animals and is known to coordinate a multitude of diverse cellular events, including proliferation, differentiation, fate specification, and cell death. Specific functions of the pathway are, however, highly context-dependent and are not well characterized in post-traumatic regeneration. Here, we use a small-molecule inhibitor of the pathway (DAPT) to demonstrate that Notch signaling is required for proper arm regeneration in the brittle star Ophioderma brevispina, a highly regenerative member of the phylum Echinodermata. We also employ a transcriptome-wide gene expression analysis (RNA-seq) to characterize the downstream genes controlled by the Notch pathway in the brittle star regeneration. We demonstrate that arm regeneration involves an extensive cross-talk between the Notch pathway and other cell signaling pathways. In the regrowing arm, Notch regulates the composition of the extracellular matrix, cell migration, proliferation, and apoptosis, as well as components of the innate immune response. We also show for the first time that Notch signaling regulates the activity of several transposable elements. Our data also suggests that one of the possible mechanisms through which Notch sustains its activity in the regenerating tissues is via suppression of Neuralized1.

Highlights

  • In metazoans, a surprisingly small number of signaling pathways are required to control animal development [1]

  • We show that Notch affects a multitude of biological processes involved in arm regeneration, including the extracellular matrix composition and remodeling, cell proliferation, death and migration, activity of mobile genetic elements, and the innate immune response

  • Details are provided on a general Feature Format version 3 (GFF3) file, available in the supplements to this article (S1 File)

Read more

Summary

Introduction

A surprisingly small number of signaling pathways are required to control animal development [1]. Knowledge of how these pathways work and interact in different contexts is key to gaining a mechanistic understanding of processes, including development, growth and post-traumatic regeneration in adults. Post-traumatic regeneration often requires dynamic changes in the balance between undifferentiated progenitors and specialized differentiated cells. The cells of the damaged adult tissue have to be activated and instructed to re-enter the cell cycle, engage in migratory behavior with coordinated spatial rearrangements, and eventually differentiate into specialized cell types of a new body part.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call