Abstract

A highly sensitive differential Helmholtz photoacoustic sensor with active noise reduction was reported. Coupled to one cavity of the photoacoustic cell, an intensity-modulated excitation light would reflect multiple times to produce photoacoustic signal, and meanwhile cause the solid-state photoacoustic effect forming differential mode noise with the frequency same as the photoacoustic signal, which could not be suppressed by conventional differential technology. Wavelength modulation technology is a splendid method to restrain this effect, which is not suitable for light sources with not adjustable wavelength. To suppress this kind of noise, an intensity-modulated compensation light was coupled to another cavity, whose central wavelength was at the non-absorption line of the measured gas. The compensation light was of the same frequency, phase, and power as the excitation light, by which the solid-state photoacoustic effects were produced to form destructive interference called active noise reduction. The experiment results showed that the active noise reduction significantly improved the signal-to-noise ratio and signal-to-background ratio. Compared with the differential, the differential with active noise reduction improved signal-to- noise ratio by about 1.2 times and signal-to-background ratio by about 9.4 times. When low-power near-infrared lasers were employed as the two light sources, the minimum detection limits for acetylene and methane reached 21 and 200 ppb, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.