Abstract
This paper presents the development of a neuro-adaptive active noise control (ANC) system. Multi-layered perceptron neural networks with a backpropagation learning algorithm are considered in both the modelling and control contexts. The capabilities of the neural network in modelling dynamical systems are investigated. A feedforward ANC structure is considered for optimum cancellation of broadband noise in a three-dimensional propagation medium. An on-line adaptation and training mechanism allowing a neural network architecture to characterise the optimal controller within the ANC system is developed. The neuro-adaptive ANC algorithm thus developed is implemented within a free-field environment and simulation results verifying its performance are presented and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Low Frequency Noise, Vibration and Active Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.