Abstract

Dynamic lane formation and long-range active nematic alignment are reported using a geometry in which kinesin motors are directly coupled to a lipid bilayer, allowing for in-plane motor diffusion during microtubule gliding. We use fluorescence microscopy to image protein distributions in and below the dense two-dimensional microtubule layer, revealing evidence of diffusion-enabled kinesin restructuring within the fluid membrane substrate as microtubules collectively glide above. We find that the lipid membrane acts to promote filament-filament alignment within the gliding layer, enhancing the formation of a globally aligned active nematic state. We also report the emergence of an intermediate, locally ordered state in which apolar dynamic lanes of nematically aligned microtubules migrate across the substrate. To understand this emergent behavior, we implement a continuum model obtained from coarse graining a collection of self-propelled rods, with propulsion set by the local motor kinetics. Tuning the microtubule and kinesin concentrations as well as active propulsion in these simulations reveals that increasing motor activity promotes dynamic nematic lane formation. Simulations and experiments show that, following fluid bilayer substrate mediated spatial motor restructuring, the total motor concentration becomes enriched below the microtubule lanes that they drive, with the feedback leading to more dynamic lanes. Our results have implications for membrane-coupled active nematics invivo as well as for engineering dynamic and reconfigurable materials where the structural elements and power sources can dynamically colocalize, enabling efficient mechanical work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.