Abstract

In many practical applications the acoustic noise generated from dynamical systems is nonlinear and deterministic or stochastic, colored, and non-Gaussian. It has been reported that the linear techniques used to control such noise exhibit degradation in performance. In addition, the actuators of an active noise control (ANC) system very often have nonminimum-phase response. A linear controller under such situations can not model the inverse of the actuator, and hence yields poor performance. A novel filtered-s least mean square (FSLMS) algorithm based ANC structure, which functions as a nonlinear controller, is proposed in this paper. A fast implementation scheme of the FSLMS algorithm is also presented. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS) algorithm and even performs better than the recently proposed Volterra filtered-x least mean square (VFXLMS) algorithm, in terms of mean square error (MSE), for active control of nonlinear noise processes. An evaluation of the computational requirements shows that the FSLMS algorithm offers a computational advantage over VFXLMS when the secondary path estimate is of length less than 6. However, the fast implementation of the FSLMS algorithm substantially reduces the number of operations compared to that of FSLMS as well as VFXLMS algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.