Abstract

By performing dynamic Monte Carlo simulations, we investigate the microrheology of isotropic suspensions of hard-core colloidal cuboids. In particular, we infer the local viscoelastic behavior of these fluids by studying the dynamics of a probe spherical particle that is incorporated in the host phase and is dragged by an external force. This technique, known as active microrheology, allows one to characterize the microscopic response of soft materials upon application of a constant force, whose intensity spans here three orders of magnitude. By tuning the geometry of cuboids from oblate to prolate as well as the system density, we observe different responses that are quantified by measuring the effective friction perceived by the probe particle. The resulting friction coefficient exhibits a linear regime at forces that are much weaker and larger than the thermal forces, whereas a nonlinear, force-thinning regime is observed at intermediate force intensities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call