Abstract

Electrically tunable metasurfaces have gained special interest as they can realize ultrathin surface-normal modulators in planar geometries. In this paper, we demonstrate a novel metasurface modulator based on electro-optic (EO) polymer that utilizes bimodal resonance inside a metallic subwavelength grating to increase the modulation efficiency. When two metal-insulator-metal (MIM) resonant modes are excited simultaneously inside the grating, they couple strongly to generate a sharp dip in the reflected spectrum. As a result, efficient intensity modulation with 15-dB extinction ratio can be obtained at the resonant wavelength under a small refractive index change of 8.5 × 10-3, corresponding to modulation voltage of less than 10 V. Due to the low parasitic capacitance of EO polymer and high conductivity of metallic gratings which is also used as the electrodes, the RC bandwidth of the device should easily exceed 100 GHz, potentially applicable to high-speed surface-normal modulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.