Abstract

This paper describes the active memory abstraction for memory-system simulation. In this abstraction---designed specifically for on-the-fly simulation, memory references logically invoke a user-specified function depending upon the reference's type and accessed memory block state. Active memory allows simulator writers to specify the appropriate on each reference, including no action for the common case of cache hits. Because the abstraction hides implementation details, implementations can be carefully tuned for particular platforms, permitting much more efficient on-the-fly simulation than the traditional trace-driven abstraction.Our SPARC implementation, Fast-Cache, executes simple data cache simulations two or three times faster than a highly-tuned trace-driven simulator and only 2 to 7 times slower than the original program. Fast-Cache implements active memory by performing a fast table look up of the memory block state, taking as few as 3 cycles on a SuperSPARC for the no-action case. Modeling the effects of Fast-Cache's additional lookup instructions qualitatively shows that Fast-Cache is likely to be the most efficient simulator for miss ratios between 3% and 40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.