Abstract
In dinoflagellates, sexual reproduction is best known to be induced by adverse environmental conditions and culminate in encystment for survival (‘sex for encystment’). Although increasing laboratory observations indicate that sex can lead to production of vegetative cells bypassing encystment, the occurrence of this alternative pathway in natural populations and its ecological roles remain poorly understood. Here we report evidence that sex in dinoflagellates can potentially be an instrument for bloom proliferation or extension. By bloom metatranscriptome profiling, we documented elevated expression of meiosis genes in two evolutionarily distinct species (Prorocentrum shikokuense and Karenia mikimotoi) during bloom, a timing unexpected of the ‘sex for encystment’ scenario. To link these genes to meiosis, we induced encystment and cyst germination in the cyst-forming species Scrippsiella acuminata, and found that five of these genes were upregulated during cyst germination, when meiosis occurs. Integrating data from all three species revealed that SPO11, MND1, and DMC1 were likely common between cyst-forming and non-encysting sex in dinoflagellates. Furthermore, flow cytometric analyses revealed consecutive rounds of DNA halving during blooms of P. shikokuense and K. mikimotoi, evidencing meiosis. These data provided novel evidence that sexual reproduction in dinoflagellates might serve to promote cell proliferation, and along with the consequent enhancement of genetic diversity facilitating resistance against pathogens and environmental stress, to boost or extend a bloom (‘sex for proliferation’). The putative meiosis-specific genes and insights reported here will prove to be helpful for rigorously testing the hypothesis and addressing whether the two modes of sex are genetically predisposed (i.e. species-specific) or environmentally induced (switchable within species), and if the latter what triggers the switch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.