Abstract

The study of systems with sustained energy uptake and dissipation at the scale of the constituent particles is an area of central interest in nonequilibrium statistical physics. Identifying such systems as a distinct category -- Active Matter -- unifies our understanding of autonomous collective move- ment in the living world and in some surprising inanimate imitations. In this article I present the Active Matter framework, briefly recall some early work, review our recent results on single-particle and collective behaviour, including experiments on active granular monolayers, and discuss new directions for the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.