Abstract

The decline of the European oyster Ostrea edulis across its biogeographic range has been driven largely by over-fishing and anthropogenic habitat destruction, often to the point of functional extinction. However, other negatively interacting factors attributing to this catastrophic decline include disease, invasive species and pollution. In addition, a relatively complex life history characterized by sporadic spawning renders O. edulis biologically vulnerable to overexploitation. As a viviparous species, successful reproduction in O. edulis populations is density dependent to a greater degree than broadcast spawning oviparous species such as the Pacific oyster Crassostrea (Magallana) gigas. Here, we report on the benthic assemblage of O. edulis and the invasive gastropod Crepidula fornicata across three actively managed South coast harbors in one of the few remaining O. edulis fisheries in the UK. Long-term data reveals that numbers of O. edulis sampled within Chichester Harbour have decreased by 96%, in contrast numbers of C. fornicata sampled have increased by 441% over a 19-year period. The recent survey data also recorded extremely low densities of O. edulis, and extremely high densities of C. fornicata, within Portsmouth and Langstone Harbours. The native oyster’s failure to recover, despite fishery closures, suggests competitive exclusion by C. fornicata is preventing recovery of O. edulis, which is thought to be due to a lack of habitat heterogeneity or suitable settlement substrate. Large scale population data reveals that mean O. edulis shell length and width has decreased significantly across all years and site groups from 2015 to 2017, with a narrowing demographic structure. An absence of juveniles and lack of multiple cohorts in the remaining population suggests that the limited fishing effort exceeds biological output and recruitment is poor. In the Langstone & Chichester 2017 sample 98% of the population is assigned to a single cohort (modal mean 71.20 ± 8.78 mm, maximum length). There is evidence of small scale (<5 km) geographic population structure between connected harbors; the 2015 Portsmouth and Chichester fishery populations exhibited disparity in the most frequent size class with 36% within 81–90 mm and 33.86% within 61–70 mm, respectively, the data also indicates a narrowing demographic over a short period of time. The prevalence of the disease Bonamiosis was monitored and supports this microgeographic population structure. Infection rates of O. edulis by Bonamia ostreae was 0% in Portsmouth Harbor (n = 48), 4.1% in Langstone (n = 145) and 21.3% in Chichester (n = 48) populations. These data collectively indicate that O. edulis is on the brink of an ecological collapse within the Solent harbors. Without effective intervention to mitigate the benthic dominance by C. fornicata in the form of biologically relevant fishery policy and the management of suitable recruitment substrate these native oyster populations could be lost.

Highlights

  • The habitat of the European flat oyster Ostrea edulis (Linnaeus, 1758) includes a range of firm substrata from the lower intertidal to subtidal depths up to 80 m (Perry & Jackson, 2017) across a biogeographic range that stretches from Morocco, throughout the Mediterranean and Black seas, to Norway (Lallias et al, 2010)

  • In addition to the comprehensive stock assessment conducted by the Southern IFCA (Southern Inshore Fisheries and Conservation Authority, 2017) the data presented here are essential for determining the relative distribution and benthic composition of oysters and slipper limpets to provide a baseline status of the Eastern Solent

  • The low standing stock of Ostrea edulis, coupled with a benthos dominated by high densities of Crepidula fornicata, the presence of Bonamia ostreae and continued fishing pressure are significant barriers to self-sustaining native oyster populations within the Solent

Read more

Summary

Introduction

The habitat of the European flat oyster Ostrea edulis (Linnaeus, 1758) includes a range of firm substrata from the lower intertidal to subtidal depths up to 80 m (Perry & Jackson, 2017) across a biogeographic range that stretches from Morocco, throughout the Mediterranean and Black seas, to Norway (Lallias et al, 2010). The distribution of O. edulis across the UK and Europe is a fraction of reported historic levels, with many historic beds completely depleted and the few remaining populations found predominantly in subtidal habitats (Gross & Smyth, 1946; Laing, Walker & Areal, 2005, 2006; Culloty & Mulcahy, 2007) This is a global issue with approximately 85% of the world’s oyster populations and their associated habitat having been lost (Beck et al, 2011), resulting in ecological decline due to the ecosystem services oysters provide (Cranfield, Michael & Doonan, 1999, Carbines, Jiang & Beentjes, 2004)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call