Abstract

We describe the pulse forming of pulsed CO 2 laser using multi-pulse superposition technique. Various pulse shapes, high duty cycle pulse forming network (PFN) are constructed by time sequence. This study shows a technology that makes it possible to make various long pulse shapes by activating SCRs of three PFN modules consecutively at a desirable delay time with the aid of a PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a high voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage by driving the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated various long pulse shapes as different trigger time intervals of SCRs among three PFN modules. As a result, we could obtain laser beam with various pulse shapes and durations from about 250 to 1000 μs .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.