Abstract
Exoskeletons with a Bowden cable for power transmission have the advantages of a concentrated mass and flexible movement. However, their integrated motor is disturbed by the Bowden cable’s friction, which limits the performance of the force loading response. In this paper, we solve this problem by designing an outer-loop feedforward-feedback proportion-differentiation controller based on an inner loop disturbance observer. Firstly, the inner loop’s dynamic performance is equivalent to the designed nominal model using the proposed disturbance observer, which effectively compensates for the parameter perturbation and friction disturbance. Secondly, based on an analysis of the stability of the inner loop controller, we obtain the stability condition and discuss the influence of modeling errors on the inner loop’s dynamic performance. Thirdly, to avoid excessive noise from the force sensors being introduced into the designed disturbance observer, we propose the feedforward-feedback proportion-differentiation controller based on the nominal model and pole configuration, which improves the outer loop’s force loading performance. Experiments are conducted, which verify the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.