Abstract

Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings.

Highlights

  • For many health care interventions, pre-introduction clinical trials are unfeasible for budget or ethical reasons and mathematical models are used as pragmatic tools to inform policy [1]

  • The approach we present is relevant for many public health problems and we illustrate this through an example of a previously published dynamic model-based economic evaluation of varicella zoster virus (VZV) vaccination [27]

  • We observed a correlation of 60% between the AR and the seeding number and frequency though we expected a major role for R0

Read more

Summary

Introduction

For many health care interventions, pre-introduction clinical trials are unfeasible for budget or ethical reasons and mathematical models are used as pragmatic tools to inform policy [1]. This is the case for large-scale infectious disease interventions. The levels of computational complexity and data capacity needs vary substantially between deterministic compartmental models and stochastic individual-based models, the two most widely used types of dynamic models. Such models are developed through an iterative process of designing, coding and validating with empirical data but few have undergone sufficient testing across a range of settings and situations to be fully validated [1]. In order to improve confidence in model-based conclusions, it is necessary to gain a thorough understanding of the system and assess how model assumptions and parameters alter the results and policy decisions [9]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call