Abstract

IntroductionIn general, in automatic control courses, the process of designing and testing a control system includes applying physical laws to model the system, working with virtual models, building one or various prototypes, and testing the control algorithms. However, in the industry, the approach must be more pragmatic because the design and implementation time must be shorter, and the success of the solution must be ensured.MethodsChallenged with this problem, a black-box model from which data are generated turns into a convenient starting point to design and implement the automation, and this approach is addressed in this research. The herein proposal is the design and implementation of didactic stations and their application in undergraduate automatic control courses. In the context of active learning, by using the stations to identify the model’s dynamics, and subsequently, design and implement an automatic system, students reinforce the theory and receive another stimulus for the development of competencies in automatic control.ResultsThe didactic stations emulate those cases in the industry where the hardware is already working, and it is necessary to automate or improve some process following a practical approach. During the first phase, students, guided by professors, designed and implemented four electromechanical prototypes. The second phase was using the prototypes in the curricular courses Control Engineering and Computerized Control to implement and evaluate controllers. The research included a control group and an experimental group. The group using the stations had a higher final course average grade than the control group.DiscussionThe findings encourage the application of this type of approach to complement the teaching of automatic control, which could positively impact the professional performance of future control engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.